Molecular docking studies of Nigella sativa L and Curcuma xanthorrhiza Roxb secondary metabolites against histamine N-methyltransferase with their ADMET prediction

J Basic Clin Physiol Pharmacol. 2021 Jun 25;32(4):795-802. doi: 10.1515/jbcpp-2020-0425. ABSTRACT OBJECTIVES: Histamine N-methyltransferase (HNMT) is an enzyme that plays a crucial role in the inactivation of histamine in central nervous system, kidneys and bronchi. Inhibition of HNMT is known to have a potential role in treating attention-deficit hyperactivity disorder, memory impairment, mental illness and […]

Continue Reading

Evaluation of the Anticancer Activity of Phytomolecules Conjugated Gold Nanoparticles Synthesized by Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin)

Materials (Basel). 2021 Jun 18;14(12):3368. doi: 10.3390/ma14123368. ABSTRACT The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and […]

Continue Reading

Evaluation of the Anticancer Activity of Phytomolecules Conjugated Gold Nanoparticles Synthesized by Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin)

Materials (Basel). 2021 Jun 18;14(12):3368. doi: 10.3390/ma14123368. ABSTRACT The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and […]

Continue Reading

The positive effect of black seed (Nigella sativa L.) essential oil on thyroid hormones in rats with hypothyroidism and hyperthyroidism

In our study, the effect of essential oil obtained from Nigella sativa L. (NSE) on thyroid hormones and antioxidant balance in hypothyroidism (HT) and hyperthyroidism (HP) models induced by propylthiouracil(PTU) and L-thyroxine(LT4 ), respectively, in rats were investigated for 4 weeks. NSE was administered by gastric gavage at a dose of 200 mg/kg body weight. In this study, 48 male Wistar albino rats with an average weight of 180-290 g and age 5-6 months were divided into eight groups, as follows: groups with HT, (1) control, (2) HT, (3) NSE, and (4) HT + NSE; groups with HP, (1) control, (2) HP, (3), and NSE (4) HP + NSE. As a result, we found that NSE administration increased total triiodothyronine (TT3 ) and decreased nitric oxide in HT + NSE. Besides, it decreased TT3 in HP + NSE and increased total antioxidant capacity. Our findings suggest that NSE may have beneficial effects on thyroid gland abnormalities owing to its antioxidant properties. PRACTICAL APPLICATIONS: Essential oils derived from Nigella sativa L. seed contain many bioactive substances such as thymoquinone and cymene. This paper emphasizes the effect of NSE on thyroid hormone abnormalities and negative oxidative state that occurs in HT and HP models. The present study provides evidence of a positive effect of NSE particularly on TT3 levels in the HT and HP models. It can therefore be assumed that NSE could be used as a supportive natural alternative source to improve thyroid hormone levels and relieve increased oxidative stress.

Continue Reading

Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.

Continue Reading

Combined bio-chemical fertilizers ameliorate agro-biochemical attributes of black cumin (Nigella sativa L.)

Nigella sativa L. is a medicinal plant with extensive, nutritional, pharmaceutical, and health applications. Nowadays, reducing the application of chemical fertilizers (synthetic fertilizers) is one of the main goals of sustainable agriculture to allow the production of safe crops. Therefore, the combined effect of urea and biofertilizers was studied on the quantitative and qualitative traits of N. sativa L. in a randomized complete block design with 10 treatments and three replications. The treatments included control (no fertilization), U (100% chemical fertilizer as urea at 53.3 kg ha-1, Nb (Biofertilizer, Azotobacter vinelandii), Pb (Biofertilizer, Pantoea agglomerans and Pseudomonas putida), Kb (Biofertilizer, Bacillus spp.), NPKb (NPK, biofertilizer), Nb + 50% U, Pb + 50% U, Kb + 50%U and NPKb + 50% U. The NPK(b) + U50% was related to the highest quantity of plant height, branch diameter, capsule (follicle) number per plant, auxiliary branches, seed yield per plant, thousand-seed weight, essential oil content, total phenolic compounds, flavonoid content, DPPH free radical scavenging, nitric oxide (NO) radical scavenging, superoxide radical scavenging, chain-breaking activity, phosphorus content, and potassium content, along with U for the highest biological yield and (Pb) + U50% for the highest essential oil percentage which is close to (NPKb) + U50%. The lowest value was observed in all traits related to the control treatment except for branch diameter that was related to (NPKb). Hence, the application of (NPKb) + U50% as bio-chemical fertilizers improved N. sativa L. Traits, so it can be recommended.

Continue Reading

Phytochemical Profile and Antioxidant Activity of Nigella sativa L Growing in Morocco

BACKGROUND: Nigella sativa L (NS) is a powerful antioxidant and medicinal plant with many therapeutic applications particularly in traditional medicine for respiratory, gastrointestinal, rheumatic, and inflammatory disorders, as well as cancer. OBJECTIVE: The aim of this study is to extract the active ingredients from the Moroccan Nigella sativa L and determine its antioxidant properties. We hypothesize that the separation of the compounds from Nigella sativa L has either a positive or negative effect on antioxidants. To study this, we explored different methods to simultaneously extract and separate compounds from Nigella sativa L and performed antioxidant tests (β-carotene and DPPH) for all collected fractions.

Continue Reading

HPLC Quantification of Thymoquinone Extracted from Nigella sativa L. (Ranunculaceae) Seeds and Antibacterial Activity of Its Extracts against Bacillus Species

The medicinal importance of Nigella sativa seeds for treating various ailments is portrayed by its traditional uses. Owing to its immense pharmacological importance, the thymoquinone phytoconstituent of N. sativa can prove beneficial for the South Asian countries including Pakistan, where this seed is commonly produced and healthcare facilities are limited. In this study, the antibacterial activity of various extracts of N. sativa seeds, extracted thymoquinone, and oil samples have been investigated against Bacillus subtilis and Bacillus licheniformis using well and disc diffusion assay. The inhibition zones ranged between 7 and 44 mm against both the bacterial strains by well diffusion assay, while disc diffusion assay provided inhibition zones in the range of 7-23 mm. Commercial and local Kalonji oil samples were included in the study. Oil samples dissolved in methanol showed increased inhibition of bacteria. However, the extracted thymoquinone showed highest antibacterial activity. Medicine formulated using thymoquinone will prove to be an herbal alternate against the resistant microbiota associated with bacterial infections. Antibacterial activity against some Bacillus species will help signify the effect on normal gut flora when oral therapy is followed. Trying different extraction protocols can help increase extraction efficiency. Study on extraction of thymoquinone in local produce of black seed can be fruitful for conducting the stability studies and can help to gain maximum benefits from the bioactives. The crude extracts from 10 g of these seeds were subjected to preliminary phytochemical investigation. Results showed that although methanol extract had the presence of maximum phytochemicals, hexane extract was the most potent in terms of antibacterial activity. Thymoquinone, a therapeutically important bioactive in N. sativa seed, was extracted employing both solvents. TLC assay and UV spectroscopy were used for its qualitative assessment, while HPLC-UV quantification showed that 250 mg/mL of methanol extract had 368.3 μg/mL thymoquinone, while its successive extraction yielded 32.94 μg/mL thymoquinone.

Continue Reading

Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies

In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals.

Continue Reading

Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03-30.54%), β-cymene (12.31-23.82 %), and 4-caranol (9.77-14.27%). The Indian seeds were rich with 4-caranol (18.81%), β-cymene (14.22%), α-phellandrene (10.58%), and β-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 μl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (-) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.

Continue Reading